Skip to content

Dashboard Performance Optimization

Executive Summary

The dashboard currently takes 15.5 seconds to load due to inefficient database queries when fetching tracker data with location history. This document outlines a comprehensive solution combining reference data prewarming, smart lazy loading, and database optimization to achieve sub-second load times.

Problem Analysis

Current Performance Issues

Measured Performance (Network Tab):

  • Total Load Time: 15.53 seconds
  • Database Query Time: 15.52 seconds
  • Network Transfer: 2.21ms (6.7MB payload)
  • Frontend Rendering: Negligible

Root Causes:

  1. N+1 Query Problem: Loading ~1500 trackers with individual location history queries
  2. No Caching: Static reference data (brands, production runs) queried on every request
  3. Bulk Loading: Attempting to load all trackers regardless of user needs
  4. Inefficient Joins: Complex queries without proper optimization

User Experience Impact

  • 15-second wait for initial dashboard load
  • No feedback during loading process
  • All-or-nothing data loading (can't filter until everything loads)
  • Poor scalability as tracker count grows

Solution Architecture

Three-Pronged Approach

  1. Reference Data Prewarming - Cache static tables for instant access
  2. Smart Lazy Loading - Load data only when user applies filters
  3. Database Optimization - Efficient queries for dynamic data

Phase 1: Reference Data Prewarming

Objective

Cache static reference tables that rarely change but are frequently accessed.

Target Tables

clients              (~10-50 records)
brands               (~20-100 records)
production_runs      (~50-500 records)
storage_locations    (~10-100 records)
delivery_locations   (~50-1000 records)
images              (~100-1000 records)

Cache Architecture

Cache Service Implementation

class ReferenceDataCacheService:
    """
    Event-driven cache for static reference data.
    No TTL - cache updates only on data changes.
    """

    def __init__(self, redis_client):
        self.redis = redis_client
        self.cache_keys = {
            'clients': 'ref:clients',
            'brands': 'ref:brands',
            'production_runs': 'ref:production_runs',
            'storage_locations': 'ref:storage_locations',
            'delivery_locations': 'ref:delivery_locations',
            'images': 'ref:images'
        }

    async def prewarm_all_caches(self):
        """Called on application startup"""
        await asyncio.gather(
            self.prewarm_clients(),
            self.prewarm_brands(),
            self.prewarm_production_runs(),
            self.prewarm_storage_locations(),
            self.prewarm_delivery_locations(),
            self.prewarm_images()
        )

    async def invalidate_cache(self, table_name: str):
        """Called when data changes"""
        cache_key = self.cache_keys.get(table_name)
        if cache_key:
            await self.redis.delete(cache_key)
            await self._reload_cache(table_name)

Cache Data Structure

{
  "ref:brands": [
    {
      "id": 1,
      "name": "Stock",
      "client_id": 1,
      "logo": "/images/stock-logo.png",
      "production_run_count": 15
    }
  ],
  "ref:production_runs": [
    {
      "id": 1,
      "name": "Summer Campaign 2024",
      "brand_id": 1,
      "start_date": "2024-06-01",
      "tracker_count": 234
    }
  ]
}

Event-Driven Cache Updates with Debouncing

Database Triggers (PostgreSQL)

-- Example for brands table with debounced notifications
CREATE OR REPLACE FUNCTION notify_brand_change()
RETURNS TRIGGER AS $$
BEGIN
    -- Use pg_notify with a delay mechanism
    PERFORM pg_notify('cache_invalidate_pending', 'brands');
    RETURN NULL;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER brand_cache_invalidate
    AFTER INSERT OR UPDATE OR DELETE ON brands
    FOR EACH STATEMENT
    EXECUTE FUNCTION notify_brand_change();

-- Similar triggers for all reference tables
CREATE TRIGGER client_cache_invalidate
    AFTER INSERT OR UPDATE OR DELETE ON clients
    FOR EACH STATEMENT
    EXECUTE FUNCTION notify_cache_change('clients');

CREATE TRIGGER production_run_cache_invalidate
    AFTER INSERT OR UPDATE OR DELETE ON production_runs
    FOR EACH STATEMENT
    EXECUTE FUNCTION notify_cache_change('production_runs');

-- Generic function for all tables
CREATE OR REPLACE FUNCTION notify_cache_change(table_name TEXT)
RETURNS TRIGGER AS $$
BEGIN
    PERFORM pg_notify('cache_invalidate_pending', table_name);
    RETURN NULL;
END;
$$ LANGUAGE plpgsql;

Debounced Cache Invalidation Service

import asyncio
from collections import defaultdict
from datetime import datetime, timedelta

class DebouncedCacheInvalidator:
    """
    Handles debounced cache invalidation to prevent cache thrashing
    during bulk operations or rapid successive changes.
    """

    def __init__(self, cache_service, debounce_delay: float = 2.0):
        self.cache_service = cache_service
        self.debounce_delay = debounce_delay
        self.pending_invalidations = defaultdict(set)
        self.invalidation_tasks = {}
        self.lock = asyncio.Lock()

    async def schedule_invalidation(self, table_name: str):
        """
        Schedule a cache invalidation with debouncing.
        Multiple calls within debounce_delay will be batched.
        """
        async with self.lock:
            # Cancel existing task if it exists
            if table_name in self.invalidation_tasks:
                self.invalidation_tasks[table_name].cancel()

            # Add to pending invalidations
            self.pending_invalidations[table_name].add(datetime.now())

            # Schedule new invalidation task
            self.invalidation_tasks[table_name] = asyncio.create_task(
                self._debounced_invalidate(table_name)
            )

    async def _debounced_invalidate(self, table_name: str):
        """
        Wait for debounce delay, then invalidate cache if no new changes.
        """
        try:
            await asyncio.sleep(self.debounce_delay)

            async with self.lock:
                if table_name in self.pending_invalidations:
                    # Clear pending invalidations
                    del self.pending_invalidations[table_name]

                    # Remove task reference
                    if table_name in self.invalidation_tasks:
                        del self.invalidation_tasks[table_name]

                    # Perform actual cache invalidation
                    await self.cache_service.invalidate_cache(table_name)

                    logger.info(f"Cache invalidated for table: {table_name}")

        except asyncio.CancelledError:
            # Task was cancelled due to new changes, this is expected
            logger.debug(f"Cache invalidation cancelled for {table_name} due to new changes")
        except Exception as e:
            logger.error(f"Error during cache invalidation for {table_name}: {e}")

# Global debounced invalidator instance
debounced_invalidator = DebouncedCacheInvalidator(cache_service)

Application Event Handlers with Debouncing

@app.on_event("startup")
async def startup_event():
    await cache_service.prewarm_all_caches()

    # Start listening for database notifications
    await start_cache_invalidation_listener()

async def start_cache_invalidation_listener():
    """
    Listen for PostgreSQL notifications and handle debounced invalidation.
    """
    import asyncpg

    conn = await asyncpg.connect(DATABASE_URL)

    async def notification_handler(connection, pid, channel, payload):
        """Handle cache invalidation notifications with debouncing"""
        if channel == 'cache_invalidate_pending':
            table_name = payload
            await debounced_invalidator.schedule_invalidation(table_name)

    await conn.add_listener('cache_invalidate_pending', notification_handler)

    # Keep connection alive
    while True:
        await asyncio.sleep(1)

# Alternative: Application-level debouncing for ORM operations
class CacheAwareService:
    """
    Base service class that handles cache invalidation for CRUD operations.
    """

    def __init__(self, model_class, cache_table_name):
        self.model_class = model_class
        self.cache_table_name = cache_table_name

    async def create(self, db: Session, **kwargs):
        """Create with automatic cache invalidation"""
        try:
            # Perform database operation
            instance = self.model_class(**kwargs)
            db.add(instance)
            db.commit()
            db.refresh(instance)

            # Schedule cache invalidation
            await debounced_invalidator.schedule_invalidation(self.cache_table_name)

            return instance
        except Exception as e:
            db.rollback()
            raise e

    async def bulk_create(self, db: Session, items: List[dict]):
        """Bulk create with single cache invalidation"""
        try:
            # Perform bulk operation
            instances = [self.model_class(**item) for item in items]
            db.add_all(instances)
            db.commit()

            # Single cache invalidation for bulk operation
            await debounced_invalidator.schedule_invalidation(self.cache_table_name)

            return instances
        except Exception as e:
            db.rollback()
            raise e

    async def update(self, db: Session, instance_id: int, **kwargs):
        """Update with automatic cache invalidation"""
        try:
            instance = db.query(self.model_class).filter(
                self.model_class.id == instance_id
            ).first()

            if not instance:
                raise ValueError(f"Instance {instance_id} not found")

            # Update fields
            for key, value in kwargs.items():
                setattr(instance, key, value)

            db.commit()
            db.refresh(instance)

            # Schedule cache invalidation
            await debounced_invalidator.schedule_invalidation(self.cache_table_name)

            return instance
        except Exception as e:
            db.rollback()
            raise e

    async def delete(self, db: Session, instance_id: int):
        """Delete with automatic cache invalidation"""
        try:
            instance = db.query(self.model_class).filter(
                self.model_class.id == instance_id
            ).first()

            if not instance:
                raise ValueError(f"Instance {instance_id} not found")

            db.delete(instance)
            db.commit()

            # Schedule cache invalidation
            await debounced_invalidator.schedule_invalidation(self.cache_table_name)

            return True
        except Exception as e:
            db.rollback()
            raise e

# Usage examples
brand_service = CacheAwareService(models.Brand, 'brands')
client_service = CacheAwareService(models.Client, 'clients')
production_run_service = CacheAwareService(models.ProductionRun, 'production_runs')

API Integration

Modified Endpoints

@router.get("/brands/", response_model=List[schemas.Brand])
async def get_brands():
    """Always serve from cache - no database queries"""
    return await cache_service.get_brands()

@router.get("/production-runs/", response_model=List[schemas.ProductionRun])
async def get_production_runs(brand_id: Optional[int] = None):
    """Filter cached data instead of querying database"""
    runs = await cache_service.get_production_runs()
    if brand_id:
        runs = [r for r in runs if r.brand_id == brand_id]
    return runs

Phase 2: Smart Lazy Loading

Lazy Loading Objective

Load tracker data only when user applies filters, while maintaining familiar UI.

User Experience Flow

  1. Instant Load: Dashboard loads with empty map/table but populated filters
  2. User Selection: User selects brand/production run from dropdowns
  3. Data Loading: Only selected tracker data is fetched
  4. Progressive Enhancement: User can refine filters to load more/less data

Frontend Implementation

State Management

interface DashboardState {
  // Reference data (always loaded from cache)
  brands: Brand[];
  productionRuns: ProductionRun[];
  locations: Location[];

  // Dynamic data (loaded on demand)
  trackers: Tracker[];
  isLazyMode: boolean;
  hasActiveFilters: boolean;
  shouldLoadTrackers: boolean;
}

// Lazy loading logic
const shouldLoadData = useMemo(() => {
  if (!isLazyMode) return true; // Normal loading for small datasets

  // Load data when user applies any filter
  return (
    selectedBrandIds.length > 0 ||
    selectedProductionRunIds.length > 0 ||
    selectedStatuses.length > 0 ||
    searchTerm.trim() !== ""
  );
}, [
  isLazyMode,
  selectedBrandIds,
  selectedProductionRunIds,
  selectedStatuses,
  searchTerm,
]);

Empty State Components

// Map component
function TrackerMap({ trackers, isLoading, isEmpty }) {
  if (isEmpty && !isLoading) {
    return (
      <MapContainer>
        <EmptyMapOverlay>
          <FunnelIcon />
          <h3>Select filters to view trackers</h3>
          <p>Use the brand and production run filters above to load tracker data</p>
        </EmptyMapOverlay>
      </MapContainer>
    );
  }

  return <MapWithTrackers trackers={trackers} />;
}

// Table component
function TrackerTable({ trackers, isLoading, isEmpty }) {
  if (isEmpty && !isLoading) {
    return (
      <TableContainer>
        <TableHeaders />
        <EmptyTableBody>
          <tr>
            <td colSpan={6} className="text-center py-8">
              <FunnelIcon className="mx-auto h-12 w-12 text-gray-400" />
              <h3>No data loaded</h3>
              <p>Select filters above to load and view tracker data</p>
            </td>
          </tr>
        </EmptyTableBody>
      </TableContainer>
    );
  }

  return <TableWithData trackers={trackers} />;
}

Backend Optimization

Filtered Query Endpoint

@router.get("/trackers/", response_model=schemas.PaginatedResponse)
async def get_trackers(
    brand_ids: Optional[List[int]] = Query(None),
    production_run_ids: Optional[List[int]] = Query(None),
    status: Optional[TrackerStatus] = None,
    include_latest_location: bool = True,
    lazy_load: bool = False
):
    """
    Optimized tracker loading with filtering support.

    When lazy_load=True and no filters provided, returns empty result.
    When filters provided, returns only matching trackers with optimized queries.
    """

    if lazy_load and not any([brand_ids, production_run_ids, status]):
        return {"items": [], "total": 0, "page": 1, "size": 0, "pages": 0}

    # Build optimized query with filters
    query = build_filtered_tracker_query(
        brand_ids=brand_ids,
        production_run_ids=production_run_ids,
        status=status,
        include_latest_location=include_latest_location
    )

    return execute_paginated_query(query)

def build_filtered_tracker_query(brand_ids, production_run_ids, status, include_latest_location):
    """
    Build optimized query with proper JOINs instead of N+1 queries.
    """
    query = db.query(models.Tracker)

    # Apply filters early to reduce dataset
    if production_run_ids:
        query = query.filter(models.Tracker.production_run_id.in_(production_run_ids))
    elif brand_ids:
        query = query.join(models.ProductionRun).filter(
            models.ProductionRun.brand_id.in_(brand_ids)
        )

    if status:
        query = query.filter(models.Tracker.current_status == status)

    # Efficient location loading with single JOIN
    if include_latest_location:
        latest_location_subquery = (
            db.query(models.LocationHistory)
            .filter(models.LocationHistory.tracker_id == models.Tracker.id)
            .order_by(models.LocationHistory.timestamp.desc())
            .limit(1)
            .subquery()
        )
        query = query.outerjoin(latest_location_subquery)

    return query

Phase 3: Database Optimization

Query Performance Analysis

Current Problematic Query Pattern

-- This creates N+1 queries (1 + N individual location lookups)
SELECT * FROM trackers;  -- 1 query for ~1500 trackers

-- Then for each tracker:
SELECT * FROM location_history
WHERE tracker_id = ?
ORDER BY timestamp DESC
LIMIT 1;  -- 1500 individual queries

Optimized Query Pattern

-- Single query with efficient JOIN
SELECT
    t.*,
    lh.id as latest_location_id,
    lh.timestamp as latest_timestamp,
    ST_X(lh.location::geometry) as latitude,
    ST_Y(lh.location::geometry) as longitude,
    lh.nearest_city,
    lh.confidence
FROM trackers t
LEFT JOIN LATERAL (
    SELECT id, timestamp, location, nearest_city, confidence
    FROM location_history
    WHERE tracker_id = t.id
    ORDER BY timestamp DESC
    LIMIT 1
) lh ON true
WHERE t.production_run_id IN (?, ?, ?)  -- Filter early
ORDER BY t.last_report_received DESC NULLS LAST;

Database Indexes

Required Indexes

-- Existing indexes (verify)
CREATE INDEX IF NOT EXISTS idx_trackers_production_run_id
    ON trackers(production_run_id);
CREATE INDEX IF NOT EXISTS idx_trackers_current_status
    ON trackers(current_status);
CREATE INDEX IF NOT EXISTS idx_trackers_last_report_received
    ON trackers(last_report_received);

-- Location history optimization
CREATE INDEX IF NOT EXISTS idx_location_history_tracker_timestamp
    ON location_history(tracker_id, timestamp DESC);

-- Production run filtering
CREATE INDEX IF NOT EXISTS idx_production_runs_brand_id
    ON production_runs(brand_id);

-- Composite indexes for common filter combinations
CREATE INDEX IF NOT EXISTS idx_trackers_status_production_run
    ON trackers(current_status, production_run_id);

Query Caching Strategy

Application-Level Caching

class TrackerQueryCache:
    """
    Cache for expensive tracker queries.
    Invalidated when tracker or location data changes.
    """

    def __init__(self, redis_client):
        self.redis = redis_client
        self.cache_ttl = 300  # 5 minutes for dynamic data

    async def get_filtered_trackers(self, filters: TrackerFilters):
        cache_key = self._build_cache_key(filters)
        cached_result = await self.redis.get(cache_key)

        if cached_result:
            return json.loads(cached_result)

        # Execute query and cache result
        result = await self._execute_filtered_query(filters)
        await self.redis.setex(
            cache_key,
            self.cache_ttl,
            json.dumps(result, default=str)
        )
        return result

    def _build_cache_key(self, filters: TrackerFilters) -> str:
        """Build deterministic cache key from filters"""
        key_parts = [
            f"brand_ids:{','.join(map(str, filters.brand_ids or []))}",
            f"production_run_ids:{','.join(map(str, filters.production_run_ids or []))}",
            f"status:{filters.status or 'all'}",
            f"include_location:{filters.include_latest_location}"
        ]
        return f"trackers:filtered:{':'.join(key_parts)}"

Implementation Timeline

Phase 1: Reference Data Prewarming (2-3 days)

Day 1: Cache Infrastructure

  • Implement ReferenceDataCacheService
  • Add Redis configuration and connection handling
  • Create cache prewarming functions for all reference tables
  • Add application startup cache initialization

Day 2: Event-Driven Updates

  • Implement database triggers for cache invalidation
  • Add application event handlers for cache updates
  • Create cache monitoring and health checks
  • Test cache invalidation on data changes

Day 3: API Integration

  • Modify reference data endpoints to use cache
  • Update frontend to consume cached data
  • Add fallback handling for cache failures
  • Performance testing and optimization

Phase 2: Smart Lazy Loading (2-3 days)

Day 1: Backend Filter Support

  • Modify trackers endpoint to support filter parameters
  • Implement lazy_load parameter handling
  • Add filtered query building logic
  • Test filtered queries for performance

Day 2: Frontend State Management

  • Update DashboardContext with lazy loading logic
  • Implement proper filter detection for data loading
  • Add empty state handling for map and table components
  • Test filter interactions and data loading

Day 3: UX Polish

  • Add loading states and progress indicators
  • Implement smooth transitions from empty to populated states
  • Add helpful messaging for empty states
  • User acceptance testing

Phase 3: Database Optimization (3-5 days)

Days 1-2: Query Optimization

  • Analyze current query execution plans
  • Implement optimized JOIN queries for location data
  • Replace N+1 queries with efficient single queries
  • Add query performance monitoring

Days 3-4: Index Optimization

  • Audit existing database indexes
  • Add missing indexes for filter columns
  • Create composite indexes for common query patterns
  • Test index effectiveness with query plans

Day 5: Caching Layer

  • Implement query result caching
  • Add cache invalidation for dynamic data
  • Performance testing and tuning
  • Production deployment preparation

Phase 4: Testing and Refinement (2 days)

Day 1: Performance Testing

  • Load testing with realistic data volumes
  • Measure performance improvements
  • Identify and fix any remaining bottlenecks
  • Validate cache hit rates and effectiveness

Day 2: User Acceptance

  • End-to-end testing of user workflows
  • Validate UX improvements
  • Fix any usability issues
  • Documentation and deployment

Success Metrics

Performance Targets

Load Time Improvements

  • Initial Dashboard Load: 15.5s → <500ms (97% improvement)
  • Filter Application: N/A → <2s (new capability)
  • Subsequent Loads: 15.5s → <100ms (cached data)

Database Performance

  • Query Count: ~1500 queries → 1-5 queries (99% reduction)
  • Query Time: 15.5s → <200ms (99% improvement)
  • Cache Hit Rate: 0% → >95% for reference data

User Experience

  • Time to Interactive: 15.5s → <500ms
  • Filter Responsiveness: Immediate (cached data)
  • Progressive Loading: Available (user-controlled)

Monitoring and Alerting

Key Metrics to Track

# Performance metrics
dashboard_load_time = Histogram('dashboard_load_seconds')
database_query_time = Histogram('db_query_seconds')
cache_hit_rate = Gauge('cache_hit_rate_percent')

# User behavior metrics
filter_usage = Counter('filter_applications_total')
lazy_load_triggers = Counter('lazy_load_triggers_total')
empty_state_views = Counter('empty_state_views_total')

Alert Thresholds

  • Dashboard load time > 2 seconds
  • Database query time > 1 second
  • Cache hit rate < 90%
  • Cache invalidation failures

Risk Mitigation

Potential Issues and Solutions

Cache Failures

Risk: Redis unavailable, cache corruption Mitigation:

  • Graceful fallback to database queries
  • Cache health monitoring and auto-recovery
  • Multiple cache layers (Redis + in-memory)

Database Performance Regression

Risk: New queries perform worse than expected Mitigation:

  • Comprehensive query performance testing
  • Database query monitoring and alerting
  • Rollback procedures for index changes

User Experience Issues

Risk: Lazy loading confuses users Mitigation:

  • Extensive user testing before deployment
  • Clear messaging and helpful empty states
  • Option to disable lazy loading for power users

Memory Usage

Risk: Cache consumes too much memory Mitigation:

  • Memory usage monitoring and limits
  • Cache size optimization and cleanup
  • Horizontal scaling if needed

Rollback Procedures

Phase 1 Rollback (Cache Issues)

  1. Disable cache service via feature flag
  2. Revert API endpoints to direct database queries
  3. Remove cache dependencies from frontend
  4. Monitor performance impact

Phase 2 Rollback (Lazy Loading Issues)

  1. Set isLazyMode = false in frontend
  2. Revert to original data loading behavior
  3. Remove empty state components
  4. Restore original user experience

Phase 3 Rollback (Database Issues)

  1. Revert to original query patterns
  2. Remove new database indexes if causing issues
  3. Disable query caching
  4. Monitor database performance

Implementation Status

Phase 1: Reference Data Prewarming - COMPLETED

What's Been Implemented:

  • ReferenceDataCacheService (app/services/cache_service.py)
  • Event-driven caching with no TTL
  • Debounced invalidation to prevent cache thrashing
  • Graceful fallback to database on cache failures
  • Support for clients, brands, production runs, storage locations, delivery locations, and images

  • DebouncedCacheInvalidator

  • Prevents cache thrashing during bulk operations
  • Configurable debounce delay (default 2 seconds)
  • Concurrent invalidation support for multiple tables

  • Comprehensive Test Suite (tests/services/test_cache_service.py)

  • 23 tests covering all functionality
  • 83% code coverage
  • All tests passing

  • Runtime Issues Fixed

  • Resolved async/await issues in SSE endpoints
  • Fixed "object list can't be used in 'await' expression" errors

Ready for Integration: The cache service is ready to be integrated into the main application startup process.

🔄 Phase 2: Smart Lazy Loading - PLANNED

Still Needs Implementation:

  • Frontend state management for lazy loading
  • Empty state components for map and table
  • Backend lazy_load parameter support
  • User data scope detection logic

Current Status:

  • User data scope detection has been implemented (UserDataScope schema)
  • Basic infrastructure exists but needs frontend integration

🔄 Phase 3: Database Optimization - PLANNED

Still Needs Implementation:

  • Optimized JOIN queries for location data
  • Database indexes for filter columns
  • Query result caching layer
  • Performance monitoring

Current Status:

  • Analysis completed, implementation pending

Next Steps for Full Implementation

Immediate (Phase 1 Integration)

  1. Initialize cache service in main.py
from app.services.cache_service import ReferenceDataCacheService, DebouncedCacheInvalidator

@app.on_event("startup")
async def startup_event():
    # Initialize cache service
    redis_client = get_redis_client()
    cache_service = ReferenceDataCacheService(redis_client)
    debounced_invalidator = DebouncedCacheInvalidator(cache_service)

    # Prewarm all caches
    await cache_service.prewarm_all_caches(db)
  1. Update reference data endpoints to use cache
@router.get("/brands/", response_model=List[schemas.Brand])
async def get_brands(db: Session = Depends(get_db)):
    cache_service = get_cache_service()
    return await cache_service.get_brands(db)
  1. Add cache invalidation to CRUD operations

Short Term (Phase 2 - Lazy Loading)

  1. Frontend lazy loading implementation
  2. Backend lazy_load parameter support
  3. Empty state UI components
  4. User data scope integration

Medium Term (Phase 3 - Database Optimization)

  1. Query optimization implementation
  2. Database index creation
  3. Performance monitoring setup
  4. Load testing and validation

Current Benefits Available

With Phase 1 complete, the following benefits are immediately available upon integration:

  • Instant reference data loading (brands, production runs, etc.)
  • Reduced database load for static data queries
  • Event-driven cache updates ensuring data consistency
  • Graceful degradation if Redis is unavailable
  • Comprehensive error handling and logging

Conclusion

Phase 1 (Reference Data Prewarming) is complete and ready for production integration. This provides immediate performance benefits for reference data loading.

Phases 2 and 3 remain as planned work to achieve the full 97% performance improvement target. The foundation is solid, and the remaining phases can be implemented incrementally while already benefiting from the caching improvements.

The implemented cache service addresses the core issue of repeated database queries for static reference data, providing a significant performance boost for administrators loading the dashboard.